

RWDevCon 2018 Vault
By the raywenderlich.com Tutorial Team

Copyright ©2018 Razeware LLC.

No4ce of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

No4ce of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

RWDevCon 2018 Tutorial Vault

raywenderlich.com 2

13: Gepng Started with ARKit

This session will get you started in making the world your view controller! You’ll build
two apps that cover a lot of ARKit ground: a Bob Ross tribute that takes painting into
the third dimension, and a recreation of that popular catalog app from everyone’s
favorite semi-disposable Swedish furniture company. Along the way, we’ll sneak in a lot
of augmented reality programming principles, techniques, and tricks, but you’ll have so
much fun that you won’t even realize that you’re learning new things!

raywenderlich.com 323

37Gepng Started with ARKit:
Demo 1
By Joey deVilla

Welcome to the “Hello, world” demo! Don’t worry — this one will be fun. You’ll pay
tribute to the legendary painting instructor Bob Ross by building an AR painting app,
and along the way you’ll...

• Set up an ARKit Scene View

• Draw basic shapes into an augmented reality scene

• Animate shapes in an augmented reality scene

• Get the device’s location, orientation, and position and turn your ARKit-ready iPhone
or iPad into a “brush” that paints various shapes, both static and animated, into the
place you’re in.

The steps here will be explained in the demo, but here are the raw steps in case you
miss a step or get stuck.

Note: Begin work with the starter project in Demo1/starter. To keep things
simple, we’ve set things up so that you’ll do all your work in just one place:
CanvasViewController.swift.

1) Set up the AR SceneKit view
At the top of CanvasViewController.swift, add this code to the bottom of the list of
properties, below the “Define AR configuration” comment:

let configuration = ARWorldTrackingConfiguration()

raywenderlich.com 324

In viewDidLoad(), implement “Set up the AR SceneKit view”:

canvas.delegate = self
canvas.debugOptions = [ARSCNDebugOptions.showWorldOrigin,
 ARSCNDebugOptions.showFeaturePoints]
canvas.showsStatistics = true
canvas.autoenablesDefaultLighting = true
canvas.session.run(configuration)

Run the app. You should see a number of big changes:

• Most of the screen now shows what the rear camera sees.

• There’s now an ARKit statistics bar between the Paint button and the tabs.

• You should see three intersecting lines — red, green, and blue — located around the
point where your device was when the app launched. This marks what ARKit
considers to be the coordinates of the origin, and the red, green, and blue lines mark
the X-, Y-, and Z-axes respectively.

2) Add a happy lil’ orange sphere to the
AR scene
In drawTestShapes(), implement “Draw happy lil’ orange sphere”:

// Draw happy lil’ orange sphere
let sphere = SCNNode(geometry: SCNSphere(radius: 0.05))
sphere.position = SCNVector3(0, 0, -0.3)
sphere.geometry?.firstMaterial?.diffuse.contents = UIColor.orange
canvas.scene.rootNode.addChildNode(sphere)

In viewDidLoad(), add this to the end of the method:

drawTestShapes()

Run the app. You should now see an orange ball floating about a foot away from you.

3) Add a shiny happy lil’ blue box, 4lted
at a jaunty angle, to the AR scene
In drawTestShapes(), implement “Draw happy lil’ blue box, tilted at a jaunty angle”:

// Draw happy lil’ blue box, tilted at a jaunty angle

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 1

raywenderlich.com 325

let box = SCNNode(geometry: SCNBox(width: 0.1, height: 0.1, length: 0.1,
chamferRadius: 0))
box.position = SCNVector3(0, 0.3, -0.2)
let degrees45 = Double.pi / 8
box.eulerAngles = SCNVector3(degrees45, degrees45, degrees45)
box.geometry?.firstMaterial?.diffuse.contents = UIColor.blue
box.geometry?.firstMaterial?.specular.contents = UIColor.white
canvas.scene.rootNode.addChildNode(box)

Run the app. You’ll see the orange ball, and if you tilt your device upwards from where
the orange ball is located, you’ll see a shiny blue box tilted at a jaunty angle.

4) Animate the blue box
In drawTestShapes(), implement “Animate the blue box”:

// Animate the blue box
let rotateAction = SCNAction.rotate(by: 2 * .pi,
 around: SCNVector3(0, 1, 0),
 duration: 2)
let rotateForeverAction = SCNAction.repeatForever(rotateAction)
box.runAction(rotateForeverAction)

Run the app and look at the blue box. You’ll see that it’s now rotating about its Y-axis.

At this point, you’ve made the ARKit version of “Hello, world!”. It’s now time to make
something more like a real app.

5) Get the device’s loca4on, orienta4on,
and posi4on
First, remove the call to drawTestShapes() from viewDidLoad(). You don’t need it
anymore.

Then, in render(_:willRenderScene:atTime) (in the ARSCNViewDelegate methods
section), implement “Get the device’s location, orientation, and position”:

// Get the device’s location, orientation, and position
guard let pointOfView = canvas.pointOfView else { return }
let transform = pointOfView.transform
let orientation = SCNVector3(-transform.m31,
 -transform.m32,
 -transform.m33)
let location = SCNVector3(transform.m41,
 transform.m42,
 transform.m43)

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 1

raywenderlich.com 326

let position = orientation + location
print("location: \(location)\norientation: \(orientation)")

Run the app and look at the debug console. Tilt your device in various positions and see
how the numbers change.

6) Create a brush
In render(_:willRenderScene:atTime), implement “Create the brush and erase any old
cursor shapes”:

// Create the brush and erase any old cursor shapes
let brush = self.createBrush(brushShape: self.brushSettings.shape,
 brushSize: self.brushSettings.size,
 position: position)
self.eraseNodes(named: "cursor")

Next, go inside the if self.paintButton.isHighlighted statement and handle the case
where the user is pressing the Paint button by implementing “Give the shape a shine
and set it to the selected color”:

// Give the shape a shine and set it to the selected color
brush.geometry?.firstMaterial?.diffuse.contents =
self.brushSettings.color
brush.geometry?.firstMaterial?.specular.contents = UIColor.white

Then, in the else clause, handle the case where the user is not pressing the Paint
button by implementing “Set the shape to the cursor color and name”:

// Set the shape to the cursor color and name
brush.geometry?.firstMaterial?.diffuse.contents = UIColor.lightGray
brush.name = "cursor"

Finally, go past the end of the if statement and implement “Paint the shape to the
screen”:

// Paint the shape to the screen
self.canvas.scene.rootNode.addChildNode(brush)

Run the app. You can now paint in AR space! You can even go to the Brush settings tab
and change the color, type, and size of the brush. The only control on that tab that
doesn’t work is the Paint spinning shapes? switch, and we’re going to make it work in
the next step.

7) Animate the shape if it’s supposed to

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 1

raywenderlich.com 327

be animated
In render(_:willRenderScene:atTime), implement “Spin the shape continuously around
the y-axis”:

if self.brushSettings.isSpinning {
 // Spin the shape continuously around the y-axis
 let rotateAction = SCNAction.rotate(by: 2 * .pi,
 around: SCNVector3(0, 1, 0),
 duration: 2)
 let rotateForeverAction = SCNAction.repeatForever(rotateAction)
 brush.runAction(rotateForeverAction)
}

Run the app. Switch to the Brush settings tab, turn the Paint spinning shapes? on,
switch back to the Paint tab, and start painting. The shapes you paint now rotate
around their y-axes in a mesmerizing way. Bob Ross would be pleased!

8) That's it!
Congrats, at this time you should have both a fully functional AR painting app and a
good understanding of ARKit basics, including:

• Setting up an ARKit Scene View

• Drawing basic shapes into an augmented reality scene

• Animating shapes in an augmented reality scene

• Getting the device’s location, orientation, and position

It’s time to move on to the next topic: plane detection and how it can help you choose
your next piece of Swedish semi-disposable furniture.

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 1

raywenderlich.com 328

38Gepng Started with ARKit:
Demo 2
By Joey deVilla

In this demo, you’ll make Raykea, the scaled-down RWDevCon answer to the IKEA
Place app. If you’re not familiar with the app, it’s an AR app that helps you answer the
question “What would items from the IKEA catalog look like if they were in this room?”

The steps here will be explained in the demo, but here are the raw steps in case you
miss a step or get stuck.

Note: Begin work with the starter project in Demo2/starter. To keep things
simple, we’ve set things up so that you’ll do all your work in just one place:
RoomViewController.swift.

1) Set up the AR configura4on
Go to Intializers section and find the createARConfiguration() method. Enter the
following between the let config and return config lines:

config.worldAlignment = .gravity
config.planeDetection = [.horizontal, .vertical]
config.isLightEstimationEnabled = true
config.providesAudioData = false

2) Implement the method that draws AR
planes over any detected surfaces
When the app detects a horizontal surface in the real world, it draws a grid over that

raywenderlich.com 329

surface, and the user can tap the grid to place AR furniture on it. When the app detects
a vertical surface in the real world, it covers it with an AR poster of Ray (because a good
Ray poster really pulls the room together).

Go to the Plane detection section and find the drawPlaneNode(on:for:) method.
Implement “Create a plane node with the same position and size as the detected plane”:

let planeNode = SCNNode(geometry: SCNPlane(
 width: CGFloat(planeAnchor.extent.x),
 height: CGFloat(planeAnchor.extent.z)
))
planeNode.position = SCNVector3(planeAnchor.center.x,
 planeAnchor.center.y,
 planeAnchor.center.z)
planeNode.geometry?.firstMaterial?.isDoubleSided = true

SCNPlanes are perpendicular to their anchor by default, so we need to rotate the plane
by 90 degrees clockwise around the x-axis. Do this by implementing “Align the plane
with the anchor”:

// Align the plane with the anchor.
planeNode.eulerAngles = SCNVector3(-Double.pi / 2, 0, 0)

We have now created an AR plane node, and we’ve given that node a position and
orientation. It’s time to apply an image to the node’s surface, which will depend on
whether it’s horizontal or vertical. Implement “Give the plane node the appropriate
surface” with the following:

// Give the plane node the appropriate surface.
if planeAnchor.alignment == .horizontal {
 planeNode.geometry?.firstMaterial?.diffuse.contents = UIImage(named:
"grid")
 planeNode.name = "horizontal"
} else {
 planeNode.geometry?.firstMaterial?.diffuse.contents = UIImage(named:
"ray")
 planeNode.name = "vertical"
}

And finally, implement “Add the plane node to the scene”:

// Add the plane node to the scene.
node.addChildNode(planeNode)
appState = .readyToFurnish

3) Handle newly-detected surfaces
Not far above the drawPlaneNode(on:for:) method that you just implemented is the

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 330

renderer(_:didAdd:for:) method. It’s called whenever a SceneKit node for a new AR
anchor is added to the scene.

Go to renderer(_:didAdd:for:) and implement the section that begins with “We only
want to deal with plane anchors”:

// We only want to deal with plane anchors, which encapsulate
// the position, orientation, and size, of a detected surface.
guard let planeAnchor = anchor as? ARPlaneAnchor else { return }

Now that we’ve ensured that we’re dealing with a plane anchor and nothing else, we can
add a plane to the AR scene. Do this by implementing “Draw the appropriate plane over
the detected surface”:

// Draw the appropriate plane over the detected surface.
drawPlaneNode(on: node, for: planeAnchor)

Run the app and point your device about the room until the yellow feature dots appear.
Then point it at the floor, a nearby wall, or even your computer’s monitor. The following
should happen:

• When it detects a horizontal surface, such as the floor or a table, it will draw a grid
with the text “Place furniture here” over that surface.

• When it detects a vertical surface with a border, such as a picture frame or a
computer monitor, it will draw a poster of Ray overt it.

The pictures drawn over the detected planes will be positioned with their centers at the
location of their corresponding plane anchors, and their lengths and widths will match
their plane anchors’ extents.

4) Handle changes to the posi4on or size
of a previously detected horizontal
surface
The renderer(_:didUpdate:for:) method is just below the method you were
implementing. It’s called whenever the properties for an AR anchor in the scene are
adjusted. This happens when ARKIt revises its estimation of the position or size of a
previously detected surface.

Start with a guard to ensure that the method responds only when the updated anchor is
a plane anchor. Do this by implementing the “Once again, we only want to deal with

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 331

plane anchors” method:

// Once again, we only want to deal with plane anchors.
guard let planeAnchor = anchor as? ARPlaneAnchor else { return }

Now that you’ve ensured that you’re dealing only with a plane anchor, remove any child
nodes its corresponding node may have. Implement “Remove any children this node may
have”:

// Remove any children this node may have.
node.enumerateChildNodes { (childNode, _) in
 childNode.removeFromParentNode()
}

Now implement “Update the plane over this surface”:

// Update the plane over this surface.
drawPlaneNode(on: node, for: planeAnchor)

5) Handle surfaces that have been
deleted
Let's implement the renderer(_:didRemove:for:) method. It’s called whenever the
SceneKit node for an AR anchor has been removed from the scene. This happens when
ARKit determines that a previously detected surface isn’t there anymore.

Start with a guard to ensure that the method responds only to the removal of a plane
from the scene. Implement “We only want to deal with plane anchors”:

// We only want to deal with plane anchors.
guard anchor is ARPlaneAnchor else { return }

Now that you’ve ensured that you’re dealing with a plane anchor, remove any child
nodes its corresponding node may have. Do this implementing “Remove any children
this node may have”:

// Remove any children this node may have.
node.enumerateChildNodes { (childNode, _) in
 childNode.removeFromParentNode()
}

Run the app again. This time, not only do grids and Ray appear over horizontal and
vertical surfaces respectively, but they also adjust in position, size, and orientation as
ARKit gets more information about the surfaces, and disappear as ARKit decides that
they’re no longer in the scene.

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 332

6) Add the ability to determine if a
detected horizontal surface is currently
on-screen
Complete the logic for the isAnyPlaneInView() method (in the App status section) by
implementing “Perform hit test for planes”:

// Perform hit test for planes.
let hitTest = sceneView.hitTest(point, types: .existingPlaneUsingExtent)
if !hitTest.isEmpty {
 return true
}

Run the app, find a surface, then point your device towards the ceiling or away from any
detected surface. The status area near the top of the screen will display the message
Point your device towards one of the detected surfaces.

7) Handle taps on the screen
Go to the handleScreenTap(sender:) method in the Adding and removing furniture
section. Implement “Find out where the user tapped on the screen”:

// Find out where the user tapped on the screen.
let tappedSceneView = sender.view as! ARSCNView
let tapLocation = sender.location(in: tappedSceneView)

Then implement the section whose name begins with “Find all the detected planes that
would intersect”:

// Find all the detected planes that would intersect with
// a line extending from where the user tapped the screen.
let planeIntersections = tappedSceneView.hitTest(tapLocation, types:
[.existingPlaneUsingGeometry])

And finally, implement the section whose name begins with “If the closest of those
planes is horizontal”:

// If the closest of those planes is horizontal,
// put the current furniture item on it.
if !planeIntersections.isEmpty {
 let firstHitTestResult = planeIntersections.first!
 guard let planeAnchor = firstHitTestResult.anchor as? ARPlaneAnchor
else { return }
 if planeAnchor.alignment == .horizontal {

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 333

 addFurniture(hitTestResult: firstHitTestResult)
 }
}

8) Draw the currently selected piece of
furniture at the loca4on where the user
tapped
This is handled by the addFurniture(hitTestResult:) method, which comes
immediately after handleScreenTap(sender:).

First, determine where in the scene the furniture should be drawn. Implement “Get the
real-world position corresponding to where the user tapped on the screen”:

// Get the real-world position corresponding to
// where the user tapped on the screen.
// Get the real-world position corresponding to
// where the user tapped on the screen.
let transform = hitTestResult.worldTransform
let positionColumn = transform.columns.3 // 4th column; column index
starts at 0
let initialPosition = SCNVector3(positionColumn.x,
 positionColumn.y,
 positionColumn.z)

Then add the furniture to the scene by implementing “Get the current furniture item,
correct its position if necessary, and add it to the scene”:

// Get the current furniture item, correct its position if necessary,
// and add it to the scene.
let node = furnitureSettings.currentFurniturePiece()
node.position = initialPosition +
furnitureSettings.currentFurnitureOffset()
sceneView.scene.rootNode.addChildNode(node)

Run the app. You should now be able to place furniture on detected horizontal surfaces
by tapping on any “Place furniture here” grid. The default furniture is the bookcase, but
you can select which furniture to place in the Furniture catalog tab.

9) That's it!
Bravo! You’ve just built a furniture layout app, and along the way, you’ve also developed
a good understanding of ARKit surface detection, including:

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 334

• Responding to ARKit’s detection of horizontal and vertical surfaces

• Responding to ARKit’s revision of horizontal and vertical surfaces that it has
detected

• Responding to when ARKit decides that previously detected horizontal and vertical
surfaces are no longer there

• Taking the 2D coordinates of a user’s tap on an AR object displayed on the screen
and translating them into real-world 3D coordinates

• Drawing rendered AR objects

You’ve completed your first steps into AR development. Congratulations!

RWDevCon 2018 Tutorial Vault Getting Started with ARKit: Demo 2

raywenderlich.com 335

Conclusion

We hope you enjoyed the RWDevCon 2018 Tutorial Video Vault!

We also hope that our team's passion for iOS, Swift, Android, and Kotlin development
has spread to you, and that you can take what you've learned here and put it into
practice.

And thanks for connecting with us! As Tammy said in the keynote, “we are all better
together.” We hope to see you at the next RWDevCon!

— Ray, Vicki, and the entire RWDevCon Team

raywenderlich.com 549

